トウモロコシ二期作栽培の品種比較試験
播種時期・品種・耕種方法の検討

横石 和也・白田 英樹

要 約
トウモロコシ二期作栽培において、一作目は播種時期を3期(3/26, 4/5, 4/15)、6品種について、
二作目は播種時期を2期(7/29, 8/5)、6品種、耕種方法について試験した。
その結果、一作目の播種時期が早いほど登熟が進み乾物率が高まる傾向で、「LG3520」の乾物収量がどの播種期においても高かった。一方で、RM115クラスの品種は、播種期が早いほど苗立率が低くなる傾向が認められた。
二作目は6品種全てで、7/29播種試験区が8/5播種試験区よりも乾物収量が高い傾向が認められた。
また、不耕起播種試験区の乾物収量は、慣行の耕起試験区と比較して6品種とも同程度であった。
最も乾物収量が高かったのは、何れの試験区においても、極晩生品種の「P3577」だった。

目的
細断型ロールベーラやラッピングサイレージの普及や、近年の国際穀物価格や輸入粗飼料の高騰を背景に、飼料用トウモロコシの自給生産は注目されている。
本県においても、酪農家5戸が平成21年4月に飼料生産コントラクタ組合を設立し、汎用型飼料収穫機を導入して飼料用トウモロコシ栽培に取り組んで以来、トウモロコシ-イタリアンライクスの二毛作体系や、本県の温暖な気候条件を生かした二期作栽培体系が広く見られるようになってきた。
しかししながら、トウモロコシの二期作栽培は播種適期が狭いために、特に二期作目トウモロコシの登熟不足が課題となる。

そこで、本報告では、二期作栽培体系を通じての適した品種・播種期を明らかにするため、一作目は6品種、3播種期(3/26, 4/5, 4/15)で試験した。二作目は6品種、2播種期(7/29, 8/5)に分けて試験し、併せて不耕起栽培による品種への影響についても調査した。

材料および方法
1）試験地：徳島県立農林水産総合技術支援センター畜産研究課試験場
2）供試品種：
一期作目：「LG3457」、「LG3490」、「LG3520」、「SH4681」、「34N84」、「九交B93号」
二期作目：「SH3815」、「SH3817」、「SH5937」、「SH9904」、「九交128号」、「P3577」
3）試験区面積：1区14㎡(0.7×20m)、2反復
4）耕種概要：
播種期：一作目：3/26、4/5、4/15の3期
二作目：7/29、8/5(耕起/不耕起)の2期
栽植密度：710本／a（畦幅70cm、株間20cm）
施肥(kg/a)：堆肥500，N-P0.0-K0=1.8-1.8-1.8
除草剂：一作目：ラッソ・乳剤30ml/a（播種直後），
ケサノノーグ～ド20ml/a（3-4葉期）
二作目：ラッソ・乳剤30ml/a（播種直後），
ケサノノーグ～ドなし
※不耕起栽培（8/5播種）については、
ランドアブルマックスロード50ml/a散布（播種後）
5）調査項目：牧草・飼料作物系統適応性検定試験実施要領にに基づき調査した。

結果および考察
1）一作目（表1）
RM115クラスに相当する「SH4681」は4/5播種まで、「九交B93号」は全期間を通じて発芽率が低かった。平年よりも4月上旬の気温が低かったことが影響したと考えられるが、一作目においては、低温発芽性の良いRM110以下の品種を用いるのが好ましいと考えられた。

生育状況は、6月中旬まで高温・少雨傾向となった影響で、特に3/26播種の試験区において、栄養成長期に水が不足して生育停滞したため、株長が短くなる傾向だった。

収量調査は、ほぼ同時期（7/25-26）に実施し、播種日が早いほど熟期が進み、乾物率が向上する傾向が認められた。乾物収量は、全ての播種期間を通じて、早生品種である「L63520」が多かった。

菅野らの報告では、北関東地区の一作目の品種比較において、早生品種よりも極早生品種の方が乾物率が高く、高い収量が得られたとある。しかしながら、本県のような温暖な気候では、RM110クラスの早生品種を利用しても十分に登熟し、高い収量を得ることが可能であった。特に気温の高い4月中旬に播種した場合は、極早生品種よりも早生品種の方が高収量となる傾向が認められた。

表1：生育・収量調査結果（一作目）

<table>
<thead>
<tr>
<th>品種名</th>
<th>相対温度</th>
<th>播種日</th>
<th>立率</th>
<th>生育良好度</th>
<th>出穂期</th>
<th>穂期</th>
<th>穗長(cm)</th>
<th>穗幅(cm)</th>
<th>健穂長高(1-6葉)</th>
<th>健穂長高(7-9葉)</th>
<th>穀熟期</th>
<th>穀物重 (kg/a)</th>
<th>乾物率(%)</th>
<th>*TDN率(%)</th>
<th>TN DN吸量(kg/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG3457</td>
<td>3/26</td>
<td>98%</td>
<td>4.0</td>
<td>6/14</td>
<td>7/25</td>
<td>196</td>
<td>16.9</td>
<td>71</td>
<td>1.0 健穂中期</td>
<td>490 36.5%</td>
<td>79</td>
<td>72.7%</td>
<td>97</td>
<td>72.7%</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>4/15</td>
<td>95%</td>
<td>7.0</td>
<td>6/17</td>
<td>7/25</td>
<td>215</td>
<td>17.3</td>
<td>75</td>
<td>1.0 健穂中期</td>
<td>558 34.2%</td>
<td>191</td>
<td>59.0%</td>
<td>113</td>
<td>71.7%</td>
<td>124</td>
</tr>
<tr>
<td>LG3490</td>
<td>3/26</td>
<td>95%</td>
<td>4.0</td>
<td>6/14</td>
<td>7/25</td>
<td>203</td>
<td>16.4</td>
<td>87</td>
<td>1.0 健穂中期</td>
<td>573 31.1%</td>
<td>178</td>
<td>63.0%</td>
<td>112</td>
<td>73.2%</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>4/15</td>
<td>93%</td>
<td>7.0</td>
<td>6/17</td>
<td>7/25</td>
<td>233</td>
<td>16.1</td>
<td>92</td>
<td>1.0 健穂中期</td>
<td>555 36.3%</td>
<td>201</td>
<td>55.2%</td>
<td>111</td>
<td>72.8%</td>
<td>132</td>
</tr>
<tr>
<td>LG3520</td>
<td>3/26</td>
<td>95%</td>
<td>4.0</td>
<td>6/14</td>
<td>7/25</td>
<td>204</td>
<td>17.3</td>
<td>77</td>
<td>1.0 健穂中期</td>
<td>582 37.1%</td>
<td>216</td>
<td>49.2%</td>
<td>106</td>
<td>74.5%</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>4/15</td>
<td>91%</td>
<td>7.0</td>
<td>6/19</td>
<td>7/25</td>
<td>233</td>
<td>16.9</td>
<td>95</td>
<td>1.0 健穂中期</td>
<td>604 33.2%</td>
<td>201</td>
<td>54.6%</td>
<td>110</td>
<td>71.8%</td>
<td>131</td>
</tr>
<tr>
<td>SH4681</td>
<td>3/26</td>
<td>95%</td>
<td>4.0</td>
<td>6/14</td>
<td>7/25</td>
<td>216</td>
<td>18.9</td>
<td>73</td>
<td>1.0 健穂中期</td>
<td>586 30.5%</td>
<td>179</td>
<td>59.4%</td>
<td>106</td>
<td>71.9%</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>4/15</td>
<td>91%</td>
<td>6.0</td>
<td>6/19</td>
<td>7/25</td>
<td>241</td>
<td>19.2</td>
<td>92</td>
<td>1.0 健穂中期</td>
<td>789 31.8%</td>
<td>251</td>
<td>43.0%</td>
<td>108</td>
<td>73.9%</td>
<td>165</td>
</tr>
<tr>
<td>34NB8</td>
<td>3/26</td>
<td>91%</td>
<td>4.0</td>
<td>6/14</td>
<td>7/25</td>
<td>179</td>
<td>16.9</td>
<td>59</td>
<td>1.0 健穂中期</td>
<td>474 37.4%</td>
<td>179</td>
<td>59.4%</td>
<td>99</td>
<td>72.0%</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>4/15</td>
<td>87%</td>
<td>7.0</td>
<td>6/20</td>
<td>7/25</td>
<td>224</td>
<td>19.1</td>
<td>77</td>
<td>1.0 健穂中期</td>
<td>617 28.7%</td>
<td>177</td>
<td>55.2%</td>
<td>98</td>
<td>73.6%</td>
<td>116</td>
</tr>
<tr>
<td>九交B93号</td>
<td>3/26</td>
<td>14%</td>
<td>1.0</td>
<td>6/17</td>
<td>7/25</td>
<td>144</td>
<td>17.9</td>
<td>55</td>
<td>1.0 健穂中期</td>
<td>627 36.0%</td>
<td>226</td>
<td>42.9%</td>
<td>97</td>
<td>72.7%</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>4/15</td>
<td>16%</td>
<td>1.0</td>
<td>6/20</td>
<td>7/25</td>
<td>181</td>
<td>20.4</td>
<td>74</td>
<td>1.0 健穂長期</td>
<td>683 32.1%</td>
<td>219</td>
<td>63.9%</td>
<td>140</td>
<td>71.2%</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>4/15</td>
<td>43%</td>
<td>3.0</td>
<td>6/24</td>
<td>7/26</td>
<td>173</td>
<td>22.2</td>
<td>76</td>
<td>1.0 健穂長期</td>
<td>805 29.5%</td>
<td>238</td>
<td>48.0%</td>
<td>114</td>
<td>73.0%</td>
<td>155</td>
</tr>
</tbody>
</table>

※SH4681(3/26.4/5播種)および九交B93号(3/26.4/5.4/15播種)は、立率が低く、参考値とする。
*TDN率は、トリメチロンの成分組成の実測値を元に、「日本標準飼料成分表(2009年版)」に記載のトリメチロンの消化率を用いて算出した。

2）二作目（表2）
全ての品種・試験区において、苗立率は良好であり、不耕起播種した試験区も問題なかった。

生育状況は、7/29播種試験区の方が、8/5播種試験区と比較して、株長は同程度だったものの、雌穂の登熟が進み、乾物率も高まる傾向が認められた。

乾物収量も同様に、播種日の早い7/29播種試験
区の方、8/5播種試験区と比較して、全品種において高かった。1週間早め播種したことによる有利な積算温度の差は120℃に及び、登熟や収量に影響を与えたと考えられた。折原1)や加藤2)らも、二期目の早期播種が重要で、7月下旬から8月上旬までの播種を推奨しており、今回の実験においても、これを支持する結果となった。

また、不耕起栽培による影響を調査した結果、
試験に供した6品種全てにおいて大きな乾物収量差は認められなかった。そのため、不耕起栽培は、幅広いトウモロコシ品種に利用可能と考えられた。

今後、二期目のトウモロコシの不耕起栽培については、播種日を早めた場合に得られる収量増加効果についても明らかにしていく必要がある。

なお、乾物収量が最も多くかった品種は、数々の試験区においても、極晩生品種の「P3577」だった。

表2：生育-収量調査結果（二期作目）

| 系列名 | 種質 | 播種日 | 目的 | 時期 | 平均値 (kg/a) | 穂重量 (kg/a) | 乾物雌穂 | 乾物比 | 乾物試験区
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SH9915</td>
<td>不耕起</td>
<td>8/5</td>
<td></td>
<td></td>
<td>631</td>
<td>619</td>
<td>619</td>
<td>619</td>
<td>619</td>
</tr>
<tr>
<td>SH9917</td>
<td>耕起</td>
<td>7/29</td>
<td></td>
<td></td>
<td>801</td>
<td>789</td>
<td>789</td>
<td>789</td>
<td>789</td>
</tr>
<tr>
<td>SH9937</td>
<td>不耕起</td>
<td>8/5</td>
<td></td>
<td></td>
<td>851</td>
<td>839</td>
<td>839</td>
<td>839</td>
<td>839</td>
</tr>
<tr>
<td>九百128</td>
<td>不耕起</td>
<td>8/5</td>
<td></td>
<td></td>
<td>851</td>
<td>839</td>
<td>839</td>
<td>839</td>
<td>839</td>
</tr>
<tr>
<td>P3577</td>
<td>不耕起</td>
<td>8/5</td>
<td></td>
<td></td>
<td>631</td>
<td>619</td>
<td>619</td>
<td>619</td>
<td>619</td>
</tr>
</tbody>
</table>

*TDN率は、トウモロコシの成分組成の実測値として、「日本標準作物成分（2009年度）」記載のトウモロコシの消化率を用いて算出した。

3)まとめ

トウモロコシ二期作栽培において、一期作目は播種時期が早いほど登熟が進み乾物率が向上する傾向が認められ、品種としては「L63520」が最も乾物収量が高かった。

二期作目は、7/29播種の試験区が8/5播種の試験区よりも乾物収量が高い傾向が認められ、品種としては「P3577」が最も乾物収量が高かった。

また、不耕起栽培は慣行の耕起栽培と同程度の収量が得られたことから、早期播種が肝要な二期作目の栽培方法として非常に有効と考えられた。

文　献
1) 桑原政司・山田盛生・井上真一，徳島畜研報，27：34-40，1986
2) 桑原政司・井上真一・富永雅也，徳島畜研報，29：10-28，1988
3) 福井弘之・武内徹郎，徳島畜研報，12：53-56，2013
4) 農林水産技術会議事務局・草地試験場，牧草・牧草作物系適応性検定実施要領（第5版）
5) 菅野勉・森田聡一郎・藤原博一・石原寛之，島田研報，日草誌，57(1)：43-46，2011
6) 福井弘之，日草誌，57(1)：151，2011
7) 加藤直樹，日草誌，57(3)：172-175，2011
○有効積算温度(平均気温-10℃の和)

<table>
<thead>
<tr>
<th>播種日</th>
<th>収穫日</th>
<th>有効積算温度(℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/26</td>
<td>7/25</td>
<td>1278</td>
</tr>
<tr>
<td>4/5</td>
<td>7/25</td>
<td>1254</td>
</tr>
<tr>
<td>4/15</td>
<td>7/26</td>
<td>1241</td>
</tr>
<tr>
<td>7/29</td>
<td>11/14</td>
<td>1473</td>
</tr>
<tr>
<td>8/5</td>
<td>11/21</td>
<td>1354</td>
</tr>
</tbody>
</table>